Tag Archives: roller chain attachments

China high quality Basic Customization Customer Size Mechanical Equipment Agriculture Roller Chain with Special Attachments

Product Description

Product Description

Detailed Product Description

Agricultural chain,
1. Made of Alloy steel 40Mn
2. Type as CA type, A type, C type, S type, A type and Rice harvester chains

Agricultural Chain:

Our factory has manufactured agricultural chains for more than 10 years. All kinds of Agricultural chains, such as Walking tractor chains, Rice Harvest chains, Combine chains, A type steel agricultural chains, CA type steel agricultura chains, C type, A type chains, and with attachments. Such as CA550, CA557, S52, S32…

Detailed Photos

 

Product Parameters

Our Advantages

Company advantages:
Own Import & Export License, The TV trade mark registered successfully in many countries, Sales network spread all over China, Products export to 65 countries in 5 continents.

Membership:
1. The member of China General Machine Components Industry Association.
2. The member of China Chain Transmission Association.
3. The member of China Chain Standardization Association.
4. The member of China Agricultural Association Machinery Manufacturers.

With our excellent trained staffs and workers, advanced and efficient equipments, completely sales network, strict QA systems. You are confidence that our premium qualified chain can meet all customers’ specification and strictest quality standards.

WHY CHOOSE US

Comprehensive Product Portfolio We produce and supply a wide range of power transmission
products including drive chains, leaf chains, conveyor chains, agricultural chains, sprockets, and
couplings. This one-store-for-all shopping experience will significantly reduce your searching costs while
guarantee youfind what you want at 1 click.

Value Choice Products Our products are the best combination of quality and price, and you get what
you want within your budgets

Seasoned Sales Associates and Engineers We have 15 seasoned sales associates and 5 engineers;
on our team at your disposal any time when you need a helping hand. They are well trained with industry
know-now and will always respond to your requests within 24 hours.
100% Customer Retention Rate Our regular customers from overseas come back not just for our
premium quality products, but for the superior services that we’ve provided over the years.

FAQ

Q1: What’s your average lead time?
A: It varies. Our regular end-to-end lead time is 1-2 months.. We also provide express shipments for rush orders. For details,please consult our sales associate.

Q2: Is your price better than your competitors given the same quality?
A: Definitely YES. We provide the most competitive price in the power transmission industry. If price disparity exists, we’ll be more than happy to do a price match.
Q3: Can you make chains according to my CAD drawings?
A: Yes. Besides the regular standard chains, we produce non-standard and custom-design products to meet the specific technical requirements. In reality, a sizable portion of our production capacity is assigned to make non-standard products.

Q4: Can we inspect the goods before shipment?
A: Yes. You or your representative or any third-party inspection party assigned is allowed access to our facility and do the inspection.

Q5: What kind of payment method is acceptable for your mill?
A: We’re flexible. We take T/T, L/C, or any other online payment methods so long as it’s applicable for you.

Q6: What if I have any other questions?
A: Whenever in doubt, you’re always encouraged to consult our sales associate any time – They will help you to your satisfaction.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Agricultural Chain
Usage: Grain Threshing, Cleaning and Drying
Material: Carbon Steel
Samples:
US$ 100/Meter
1 Meter(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

mechanical

How to select the appropriate lubricant for a mechanical chain?

Choosing the right lubricant for a mechanical chain is crucial for ensuring optimal performance, reducing wear, and extending the chain’s lifespan. Here are the steps to select the appropriate lubricant:

  1. Identify the operating conditions: Consider the environment in which the mechanical chain operates, including temperature, humidity, presence of contaminants, and potential exposure to water, chemicals, or other substances.
  2. Determine the chain speed and load: Understand the chain’s operating speed and the amount of load it carries. Higher speeds and heavier loads may require lubricants with specific viscosity and load-carrying capabilities.
  3. Consult manufacturer recommendations: Check the manufacturer’s guidelines and recommendations for the specific mechanical chain. They often provide information on the type of lubricant suitable for the chain.
  4. Consider the lubricant properties: Evaluate the lubricant’s properties, such as viscosity, temperature range, anti-wear additives, corrosion resistance, and compatibility with the chain material. The lubricant should be able to withstand the operating conditions and provide adequate lubrication and protection.
  5. Assess maintenance requirements: Consider the maintenance schedule and ease of lubrication. Some lubricants may require more frequent application or specialized equipment for lubrication.
  6. Comply with industry regulations: In certain industries, there may be specific regulations or standards for lubricants. Ensure the selected lubricant meets the required specifications.
  7. Perform field trials if necessary: In critical applications or unique operating conditions, it may be beneficial to conduct field trials with different lubricants to determine the most suitable one.

It is advisable to consult with lubricant manufacturers, suppliers, or industry experts for specific guidance on selecting the appropriate lubricant for your mechanical chain. They can provide valuable insights and recommendations based on their expertise and knowledge of lubrication products.

mechanical

How to properly tension a mechanical chain?

Proper tensioning of a mechanical chain is crucial for optimal performance and longevity. Here is a detailed guide on how to properly tension a mechanical chain:

  1. Refer to the manufacturer’s guidelines: The first step is to consult the manufacturer’s guidelines or technical documentation for the specific chain you are using. These guidelines will provide recommendations for the appropriate tensioning method and tension levels.
  2. Inspect the chain: Before tensioning, visually inspect the chain for any signs of wear, damage, or misalignment. Ensure that the chain is properly lubricated.
  3. Measure the slack: Using a tension measuring tool, measure the amount of slack or sag in the chain. The chain should have a specified amount of tension, which varies based on the chain type and application requirements.
  4. Adjust the tension: To adjust the tension, you can typically do one of the following:
    • Tensioning via an adjustable tensioning device: Many mechanical chains have tensioning devices built into the system. Follow the manufacturer’s instructions to adjust the tension using these devices.
    • Tensioning via manual adjustment: In some cases, tension can be adjusted manually by adding or removing links from the chain or by adjusting the position of the chain tensioner or idler sprocket.
  5. Ensure proper alignment: During tensioning, ensure that the chain is properly aligned with the sprockets. Misalignment can lead to premature wear and reduced performance.
  6. Recheck tension: After tensioning, recheck the tension using the measuring tool to ensure it falls within the recommended range specified by the manufacturer.
  7. Monitor and readjust: Chains can experience tension loss over time due to wear or other factors. Regularly monitor the tension and readjust as needed to maintain optimal performance.

It is important to note that over-tensioning or under-tensioning can both be detrimental to chain performance. Over-tensioning can cause excessive stress on the chain and other components, leading to premature wear or failure. Under-tensioning can result in chain slippage, reduced power transmission efficiency, and increased wear.

For complex or critical applications, it is recommended to consult with a qualified engineer or chain manufacturer to ensure proper tensioning based on the specific requirements of your system.

China high quality Basic Customization Customer Size Mechanical Equipment Agriculture Roller Chain with Special Attachments  China high quality Basic Customization Customer Size Mechanical Equipment Agriculture Roller Chain with Special Attachments
editor by CX 2024-05-13

China Hot selling Basic Customization Customer Size Mechanical Equipment Agriculture Roller Chain with Special Attachments

Product Description

Product Description

Detailed Product Description

Agricultural chain,
1. Made of Alloy steel 40Mn
2. Type as CA type, A type, C type, S type, A type and Rice harvester chains

Agricultural Chain:

Our factory has manufactured agricultural chains for more than 10 years. All kinds of Agricultural chains, such as Walking tractor chains, Rice Harvest chains, Combine chains, A type steel agricultural chains, CA type steel agricultura chains, C type, A type chains, and with attachments. Such as CA550, CA557, S52, S32…

Detailed Photos

 

Product Parameters

Our Advantages

Company advantages:
Own Import & Export License, The TV trade mark registered successfully in many countries, Sales network spread all over China, Products export to 65 countries in 5 continents.

Membership:
1. The member of China General Machine Components Industry Association.
2. The member of China Chain Transmission Association.
3. The member of China Chain Standardization Association.
4. The member of China Agricultural Association Machinery Manufacturers.

With our excellent trained staffs and workers, advanced and efficient equipments, completely sales network, strict QA systems. You are confidence that our premium qualified chain can meet all customers’ specification and strictest quality standards.

WHY CHOOSE US

Comprehensive Product Portfolio We produce and supply a wide range of power transmission
products including drive chains, leaf chains, conveyor chains, agricultural chains, sprockets, and
couplings. This one-store-for-all shopping experience will significantly reduce your searching costs while
guarantee youfind what you want at 1 click.

Value Choice Products Our products are the best combination of quality and price, and you get what
you want within your budgets

Seasoned Sales Associates and Engineers We have 15 seasoned sales associates and 5 engineers;
on our team at your disposal any time when you need a helping hand. They are well trained with industry
know-now and will always respond to your requests within 24 hours.
100% Customer Retention Rate Our regular customers from overseas come back not just for our
premium quality products, but for the superior services that we’ve provided over the years.

FAQ

Q1: What’s your average lead time?
A: It varies. Our regular end-to-end lead time is 1-2 months.. We also provide express shipments for rush orders. For details,please consult our sales associate.

Q2: Is your price better than your competitors given the same quality?
A: Definitely YES. We provide the most competitive price in the power transmission industry. If price disparity exists, we’ll be more than happy to do a price match.
Q3: Can you make chains according to my CAD drawings?
A: Yes. Besides the regular standard chains, we produce non-standard and custom-design products to meet the specific technical requirements. In reality, a sizable portion of our production capacity is assigned to make non-standard products.

Q4: Can we inspect the goods before shipment?
A: Yes. You or your representative or any third-party inspection party assigned is allowed access to our facility and do the inspection.

Q5: What kind of payment method is acceptable for your mill?
A: We’re flexible. We take T/T, L/C, or any other online payment methods so long as it’s applicable for you.

Q6: What if I have any other questions?
A: Whenever in doubt, you’re always encouraged to consult our sales associate any time – They will help you to your satisfaction.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Agricultural Chain
Usage: Grain Threshing, Cleaning and Drying
Material: Carbon Steel
Samples:
US$ 100/Meter
1 Meter(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

mechanical

How to select the appropriate lubricant for a mechanical chain?

Choosing the right lubricant for a mechanical chain is crucial for ensuring optimal performance, reducing wear, and extending the chain’s lifespan. Here are the steps to select the appropriate lubricant:

  1. Identify the operating conditions: Consider the environment in which the mechanical chain operates, including temperature, humidity, presence of contaminants, and potential exposure to water, chemicals, or other substances.
  2. Determine the chain speed and load: Understand the chain’s operating speed and the amount of load it carries. Higher speeds and heavier loads may require lubricants with specific viscosity and load-carrying capabilities.
  3. Consult manufacturer recommendations: Check the manufacturer’s guidelines and recommendations for the specific mechanical chain. They often provide information on the type of lubricant suitable for the chain.
  4. Consider the lubricant properties: Evaluate the lubricant’s properties, such as viscosity, temperature range, anti-wear additives, corrosion resistance, and compatibility with the chain material. The lubricant should be able to withstand the operating conditions and provide adequate lubrication and protection.
  5. Assess maintenance requirements: Consider the maintenance schedule and ease of lubrication. Some lubricants may require more frequent application or specialized equipment for lubrication.
  6. Comply with industry regulations: In certain industries, there may be specific regulations or standards for lubricants. Ensure the selected lubricant meets the required specifications.
  7. Perform field trials if necessary: In critical applications or unique operating conditions, it may be beneficial to conduct field trials with different lubricants to determine the most suitable one.

It is advisable to consult with lubricant manufacturers, suppliers, or industry experts for specific guidance on selecting the appropriate lubricant for your mechanical chain. They can provide valuable insights and recommendations based on their expertise and knowledge of lubrication products.

mechanical

What are the common causes of mechanical chain failures?

Mechanical chain failures can occur due to various factors, and understanding the common causes can help prevent them and ensure reliable operation. Here are some detailed explanations of the common causes of mechanical chain failures:

  • Inadequate Lubrication: Insufficient or improper lubrication is one of the leading causes of chain failures. Insufficient lubrication can lead to increased friction, wear, and heat generation, causing accelerated chain elongation, increased power losses, and ultimately, chain failure. Proper and regular lubrication with the recommended lubricant helps reduce friction, prevent wear, and extend the chain’s lifespan.
  • Overloading: Subjecting the chain to excessive loads beyond its rated capacity can lead to premature failure. Overloading causes increased stress on the chain’s components, leading to accelerated wear, elongation, and eventual breakage. It is crucial to ensure that the mechanical chain is appropriately sized and rated for the intended load to prevent overloading and subsequent failures.
  • Poor Installation: Incorrect installation practices can compromise the performance and longevity of a mechanical chain. Improper tensioning, misalignment of sprockets, incorrect installation of connecting links, or inadequate clearances can lead to increased wear, excessive stress, and chain misalignment. Following proper installation procedures and manufacturer guidelines is essential to ensure the chain operates correctly and efficiently.
  • Inadequate Maintenance: Neglecting regular maintenance tasks such as cleaning, inspection, and lubrication can contribute to chain failures. Dirt, debris, and contaminants can accumulate on the chain, leading to increased wear and reduced performance. Regular maintenance, including cleaning, lubrication, and periodic inspection, helps identify and address potential issues before they result in chain failure.
  • Environmental Factors: Harsh environmental conditions such as high temperatures, exposure to chemicals, excessive moisture, or abrasive particles can accelerate chain wear and corrosion, leading to failures. It is essential to select chains with appropriate material composition and protective coatings to withstand the specific environmental conditions of the application.
  • Chain Misalignment: Improper alignment of sprockets can cause the chain to run off-track, resulting in increased wear, noise, and potential failure. Correct alignment ensures proper engagement between the chain and sprockets, distributing the load evenly and minimizing stress on the chain’s components.
  • Fatigue and Wear: Continuous operation and cyclic loading can cause fatigue and wear on the chain’s components over time. Fatigue failures typically occur due to repeated stress cycles, resulting in crack propagation and ultimate failure. Wear can be caused by abrasive particles, improper lubrication, or inadequate maintenance. Regular inspection and replacement of worn-out or damaged chain components are necessary to prevent sudden failures.

By addressing these common causes and implementing proper maintenance, lubrication, installation, and operating practices, the risk of mechanical chain failures can be significantly reduced, ensuring smooth and reliable operation of the chain system.

China Hot selling Basic Customization Customer Size Mechanical Equipment Agriculture Roller Chain with Special Attachments  China Hot selling Basic Customization Customer Size Mechanical Equipment Agriculture Roller Chain with Special Attachments
editor by CX 2024-03-26

China wholesaler Basic Customization Customer Size Mechanical Equipment Agriculture Roller Chain with Special Attachments

Product Description

Product Description

Detailed Product Description

Agricultural chain,
1. Made of Alloy steel 40Mn
2. Type as CA type, A type, C type, S type, A type and Rice harvester chains

Agricultural Chain:

Our factory has manufactured agricultural chains for more than 10 years. All kinds of Agricultural chains, such as Walking tractor chains, Rice Harvest chains, Combine chains, A type steel agricultural chains, CA type steel agricultura chains, C type, A type chains, and with attachments. Such as CA550, CA557, S52, S32…

Detailed Photos

 

Product Parameters

Our Advantages

Company advantages:
Own Import & Export License, The TV trade mark registered successfully in many countries, Sales network spread all over China, Products export to 65 countries in 5 continents.

Membership:
1. The member of China General Machine Components Industry Association.
2. The member of China Chain Transmission Association.
3. The member of China Chain Standardization Association.
4. The member of China Agricultural Association Machinery Manufacturers.

With our excellent trained staffs and workers, advanced and efficient equipments, completely sales network, strict QA systems. You are confidence that our premium qualified chain can meet all customers’ specification and strictest quality standards.

WHY CHOOSE US

Comprehensive Product Portfolio We produce and supply a wide range of power transmission
products including drive chains, leaf chains, conveyor chains, agricultural chains, sprockets, and
couplings. This one-store-for-all shopping experience will significantly reduce your searching costs while
guarantee youfind what you want at 1 click.

Value Choice Products Our products are the best combination of quality and price, and you get what
you want within your budgets

Seasoned Sales Associates and Engineers We have 15 seasoned sales associates and 5 engineers;
on our team at your disposal any time when you need a helping hand. They are well trained with industry
know-now and will always respond to your requests within 24 hours.
100% Customer Retention Rate Our regular customers from overseas come back not just for our
premium quality products, but for the superior services that we’ve provided over the years.

FAQ

Q1: What’s your average lead time?
A: It varies. Our regular end-to-end lead time is 1-2 months.. We also provide express shipments for rush orders. For details,please consult our sales associate.

Q2: Is your price better than your competitors given the same quality?
A: Definitely YES. We provide the most competitive price in the power transmission industry. If price disparity exists, we’ll be more than happy to do a price match.
Q3: Can you make chains according to my CAD drawings?
A: Yes. Besides the regular standard chains, we produce non-standard and custom-design products to meet the specific technical requirements. In reality, a sizable portion of our production capacity is assigned to make non-standard products.

Q4: Can we inspect the goods before shipment?
A: Yes. You or your representative or any third-party inspection party assigned is allowed access to our facility and do the inspection.

Q5: What kind of payment method is acceptable for your mill?
A: We’re flexible. We take T/T, L/C, or any other online payment methods so long as it’s applicable for you.

Q6: What if I have any other questions?
A: Whenever in doubt, you’re always encouraged to consult our sales associate any time – They will help you to your satisfaction.

Type: Agricultural Chain
Usage: Grain Threshing, Cleaning and Drying
Material: Carbon Steel
Samples:
US$ 100/Meter
1 Meter(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

mechanical

How to select the appropriate lubricant for a mechanical chain?

Choosing the right lubricant for a mechanical chain is crucial for ensuring optimal performance, reducing wear, and extending the chain’s lifespan. Here are the steps to select the appropriate lubricant:

  1. Identify the operating conditions: Consider the environment in which the mechanical chain operates, including temperature, humidity, presence of contaminants, and potential exposure to water, chemicals, or other substances.
  2. Determine the chain speed and load: Understand the chain’s operating speed and the amount of load it carries. Higher speeds and heavier loads may require lubricants with specific viscosity and load-carrying capabilities.
  3. Consult manufacturer recommendations: Check the manufacturer’s guidelines and recommendations for the specific mechanical chain. They often provide information on the type of lubricant suitable for the chain.
  4. Consider the lubricant properties: Evaluate the lubricant’s properties, such as viscosity, temperature range, anti-wear additives, corrosion resistance, and compatibility with the chain material. The lubricant should be able to withstand the operating conditions and provide adequate lubrication and protection.
  5. Assess maintenance requirements: Consider the maintenance schedule and ease of lubrication. Some lubricants may require more frequent application or specialized equipment for lubrication.
  6. Comply with industry regulations: In certain industries, there may be specific regulations or standards for lubricants. Ensure the selected lubricant meets the required specifications.
  7. Perform field trials if necessary: In critical applications or unique operating conditions, it may be beneficial to conduct field trials with different lubricants to determine the most suitable one.

It is advisable to consult with lubricant manufacturers, suppliers, or industry experts for specific guidance on selecting the appropriate lubricant for your mechanical chain. They can provide valuable insights and recommendations based on their expertise and knowledge of lubrication products.

mechanical

What are the noise levels associated with mechanical chains?

When it comes to noise levels, mechanical chains can generate varying amounts of noise depending on several factors. Here are some detailed considerations:

  • Chain Type: Different chain types produce different noise levels. For example, roller chains generally generate less noise compared to some other types, such as leaf chains or silent chains.
  • Lubrication: Proper lubrication of the chain can help reduce noise by minimizing metal-to-metal contact and reducing friction. Insufficient or improper lubrication can lead to increased noise levels.
  • Tension: Incorrect chain tension can result in excessive noise. It is important to maintain proper tension to prevent the chain from slapping against the sprockets or other components.
  • Wear and Maintenance: A worn-out or poorly maintained chain can produce more noise due to increased friction and potential misalignment. Regular inspection and maintenance can help mitigate noise issues.
  • Operating Conditions: Factors such as speed, load, and environmental conditions can affect noise levels. Higher speeds and heavier loads can contribute to increased noise, while operating in a damp or dusty environment may amplify noise.

It is important to note that excessive noise from a mechanical chain can be indicative of underlying issues such as misalignment, insufficient lubrication, or worn components. Regular inspection and maintenance can help identify and address such issues, reducing noise levels and ensuring proper chain performance.

If noise reduction is a critical requirement for your application, there are additional measures that can be taken, such as using noise-dampening materials or employing noise reduction techniques at the system level. Consulting with experts in chain design and application can provide further guidance on noise mitigation strategies.

China wholesaler Basic Customization Customer Size Mechanical Equipment Agriculture Roller Chain with Special Attachments  China wholesaler Basic Customization Customer Size Mechanical Equipment Agriculture Roller Chain with Special Attachments
editor by CX 2023-10-26

China manufacturer Basic Customization Customer Size Mechanical Equipment Agriculture Roller Chain with Special Attachments

Product Description

Product Description

Detailed Product Description

Agricultural chain,
1. Made of Alloy steel 40Mn
2. Type as CA type, A type, C type, S type, A type and Rice harvester chains

Agricultural Chain:

Our factory has manufactured agricultural chains for more than 10 years. All kinds of Agricultural chains, such as Walking tractor chains, Rice Harvest chains, Combine chains, A type steel agricultural chains, CA type steel agricultura chains, C type, A type chains, and with attachments. Such as CA550, CA557, S52, S32…

Detailed Photos

 

Product Parameters

Our Advantages

Company advantages:
Own Import & Export License, The TV trade mark registered successfully in many countries, Sales network spread all over China, Products export to 65 countries in 5 continents.

Membership:
1. The member of China General Machine Components Industry Association.
2. The member of China Chain Transmission Association.
3. The member of China Chain Standardization Association.
4. The member of China Agricultural Association Machinery Manufacturers.

With our excellent trained staffs and workers, advanced and efficient equipments, completely sales network, strict QA systems. You are confidence that our premium qualified chain can meet all customers’ specification and strictest quality standards.

WHY CHOOSE US

Comprehensive Product Portfolio We produce and supply a wide range of power transmission
products including drive chains, leaf chains, conveyor chains, agricultural chains, sprockets, and
couplings. This one-store-for-all shopping experience will significantly reduce your searching costs while
guarantee youfind what you want at 1 click.

Value Choice Products Our products are the best combination of quality and price, and you get what
you want within your budgets

Seasoned Sales Associates and Engineers We have 15 seasoned sales associates and 5 engineers;
on our team at your disposal any time when you need a helping hand. They are well trained with industry
know-now and will always respond to your requests within 24 hours.
100% Customer Retention Rate Our regular customers from overseas come back not just for our
premium quality products, but for the superior services that we’ve provided over the years.

FAQ

Q1: What’s your average lead time?
A: It varies. Our regular end-to-end lead time is 1-2 months.. We also provide express shipments for rush orders. For details,please consult our sales associate.

Q2: Is your price better than your competitors given the same quality?
A: Definitely YES. We provide the most competitive price in the power transmission industry. If price disparity exists, we’ll be more than happy to do a price match.
Q3: Can you make chains according to my CAD drawings?
A: Yes. Besides the regular standard chains, we produce non-standard and custom-design products to meet the specific technical requirements. In reality, a sizable portion of our production capacity is assigned to make non-standard products.

Q4: Can we inspect the goods before shipment?
A: Yes. You or your representative or any third-party inspection party assigned is allowed access to our facility and do the inspection.

Q5: What kind of payment method is acceptable for your mill?
A: We’re flexible. We take T/T, L/C, or any other online payment methods so long as it’s applicable for you.

Q6: What if I have any other questions?
A: Whenever in doubt, you’re always encouraged to consult our sales associate any time – They will help you to your satisfaction.

Shipping Cost:

Estimated freight per unit.



To be negotiated
Type: Agricultural Chain
Usage: Grain Threshing, Cleaning and Drying
Material: Carbon Steel
Samples:
US$ 100/Meter
1 Meter(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

mechanical

What are the future trends and advancements in mechanical chain technology?

The field of mechanical chain technology is continuously evolving, driven by the need for improved performance, efficiency, and durability. Here are some future trends and advancements to look out for:

  • Advanced Materials: The development of new materials with enhanced properties, such as higher strength, improved wear resistance, and superior corrosion resistance, will contribute to the advancement of mechanical chains. Materials like advanced alloys, composite materials, and coatings will be explored to meet the evolving demands of different industries.
  • Smart and Connected Chains: The integration of sensors and smart technologies within mechanical chains will enable real-time monitoring of chain performance, condition, and health. This data can be used for predictive maintenance, optimizing chain operation, and improving overall system efficiency.
  • Improved Lubrication Systems: Innovations in lubrication systems will focus on reducing friction, enhancing lubricant distribution, and extending the lubrication intervals. Self-lubricating chains or advanced lubrication techniques, such as micro-lubrication or dry lubrication, may become more prevalent, reducing the need for frequent lubrication maintenance.
  • Enhanced Design and Manufacturing Techniques: Advances in design software, simulation tools, and manufacturing processes will enable the development of more efficient and lightweight chain designs. Techniques like additive manufacturing (3D printing) may be employed to create complex and customized chain components.
  • Improved Wear and Fatigue Resistance: Research will focus on developing surface treatments, coatings, and heat treatments to enhance the wear and fatigue resistance of mechanical chains. This will result in longer service life and improved reliability, particularly in demanding applications.
  • Environmental Sustainability: As industries strive for more sustainable practices, there will be a greater emphasis on developing eco-friendly chain materials, lubricants, and manufacturing processes. Efforts to reduce waste, energy consumption, and carbon footprint will drive the future development of mechanical chain technology.

These advancements will enable mechanical chains to meet the evolving needs of various industries, including automation, robotics, automotive, aerospace, and more. The future of mechanical chain technology holds promise for improved performance, efficiency, and sustainability, contributing to the advancement of industrial systems and processes.

mechanical

What are the cost considerations when purchasing a mechanical chain?

When purchasing a mechanical chain, there are several cost considerations to take into account. These include the initial cost of the chain, ongoing maintenance and replacement costs, and the overall value it provides to your application. Here are some detailed cost considerations:

  • Initial Cost: The initial cost of a mechanical chain depends on various factors such as chain type, size, material, and quality. Higher-quality chains may have a higher upfront cost but often offer better durability and longer service life.
  • Maintenance Costs: Consider the maintenance requirements and associated costs when evaluating the overall cost of a mechanical chain. Regular lubrication, tension adjustments, and periodic inspections are necessary for proper chain performance and longevity. The cost of lubricants, maintenance tools, and labor should be factored into the total cost of ownership.
  • Replacement Costs: Mechanical chains experience wear over time and may require replacement after reaching their service life or if they become damaged or worn beyond acceptable limits. Consider the frequency and cost of chain replacements when assessing the overall cost.
  • Application-Specific Costs: Evaluate the specific requirements of your application. If the application demands high load capacity or specialized chain features, it may involve additional costs. Customization, special coatings, or specific certifications may also influence the overall cost.
  • Total Cost of Ownership: Assess the long-term value and total cost of ownership rather than focusing solely on the initial purchase price. A higher-quality chain that offers better durability, longer service life, and lower maintenance requirements can result in reduced downtime, fewer replacements, and lower overall costs in the long run.

It is recommended to consider the overall value and total cost of ownership when evaluating the cost of a mechanical chain. Consult with reputable suppliers or manufacturers who can provide guidance on selecting the right chain based on your application requirements and budget constraints.

mechanical

What are the main components of a mechanical chain?

A mechanical chain consists of several essential components that work together to transmit power and enable motion. Here are the main components of a mechanical chain:

  • Inner and Outer Plates: The inner and outer plates are flat metal plates that form the sides of the chain. They provide structural integrity and support the load-carrying rollers or links.
  • Pins: Pins are cylindrical metal rods that connect the inner and outer plates. They act as pivot points and allow the chain to flex and articulate as it moves around the sprockets.
  • Rollers or Links: Rollers or links are cylindrical components that sit between the inner and outer plates. In roller chains, they have a barrel shape and rotate on the pins, while in link chains, they are flat plates connected by pins.
  • Bushings: Bushings are cylindrical metal sleeves that fit inside the rollers or links. They reduce friction between the pins and the rollers/links, allowing smooth rotation.
  • Sprockets: Sprockets are toothed wheels with grooves or teeth that engage with the rollers or links of the chain. They transmit power and control the movement of the chain. Sprockets are typically mounted on shafts or spindles.
  • Tensioning and Guide Devices: Tensioning and guide devices are used to maintain proper tension in the chain and guide its path along the sprockets. These devices include tensioners, idler sprockets, guide rails, and chain guides.
  • Lubrication System: Many mechanical chains require lubrication to reduce friction and wear. Lubricants are applied to the chain to ensure smooth operation and extend its service life. Some chains may have self-lubricating properties or use specialized lubrication systems.
  • Connecting Links: Connecting links, also known as master links, are used to join the ends of the chain together. They typically have removable pins or clips for easy assembly and disassembly.

These components work together to form a complete mechanical chain, enabling it to transmit power, provide flexibility, and control the motion of machinery or equipment. The specific design and arrangement of these components may vary depending on the type of chain and its intended application.

China manufacturer Basic Customization Customer Size Mechanical Equipment Agriculture Roller Chain with Special Attachments  China manufacturer Basic Customization Customer Size Mechanical Equipment Agriculture Roller Chain with Special Attachments
editor by CX 2023-09-23

China factory Mechanical Chain Senqcia Chain 80 A Series Short Pitch Precision Simplex Roller Chains and Bush Chains with Attachments

Product Description

A Series Short pitch Precision Simplex Roller Chains & Bush Chains

ISO/ANSI/ DIN
Chain No.
China
Chain No.
Pitch
P
mm
Roller diameter

d1max
mm

Width between inner plates
b1min
mm
Pin diameter

d2max
mm

Pin length Inner plate depth
h2max
mm
 Plate  thickness

Tmax
 mm

Tensile strength

Qmin
kN/lbf

Average tensile strength
Q0
kN
Weight per meter
q  
 kg/m
Lmax
mm
Lcmax
mm
80 16A-1 25.4000 15.88 15.75 7.92 32.70 35.00 24.00 3.25 56.70/12886 74.3 2.60

*Bush chain:d1 in the table indicates the external diameter of the bush

ROLLER CHAIN

Roller chain or bush roller chain is the type of chain drive most commonly used for transmission of mechanical power on many kinds of domestic, industrial and agricultural machinery, including conveyors, wire- and tube-drawing machines, printing presses, cars, motorcycles, and bicycles. It consists of a series of short cylindrical rollers held together by side links. It is driven by a toothed wheel called a sprocket. It is a simple, reliable, and efficient means of power transmission.

CONSTRUCTION OF THE CHAIN

Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CZPT which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.

LUBRICATION

Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an CZPT paste that will compound wear on chains. This problem can be circumvented by use of a “dry” PTFE spray, which forms a solid film after application and repels both particles and moisture.

USE

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain system
Roller chains are used in low- to mid-speed drives at around 600 to 800 feet per minute; however, at higher speeds, around 2,000 to 3,000 feet per minute, V-belts are normally used due to wear and noise issues.
A bicycle chain is a form of roller chain. Bicycle chains may have a master link, or may require a chain tool for removal and installation. A similar but larger and thus stronger chain is used on most motorcycles although it is sometimes replaced by either a toothed belt or a shaft drive, which offer lower noise level and fewer maintenance requirements.
The great majority of automobile engines use roller chains to drive the camshaft(s). Very high performance engines often use gear drive, and starting in the early 1960s toothed belts were used by some manufacturers.
Chains are also used in forklifts using hydraulic rams as a pulley to raise and lower the carriage; however, these chains are not considered roller chains, but are classified as lift or leaf chains.
Chainsaw cutting chains superficially resemble roller chains but are more closely related to leaf chains. They are driven by projecting drive links which also serve to locate the chain CZPT the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain drive from an air motor
A perhaps unusual use of a pair of motorcycle chains is in the Harrier Jump Jet, where a chain drive from an air motor is used to rotate the movable engine nozzles, allowing them to be pointed downwards for hovering flight, or to the rear for normal CZPT flight, a system known as Thrust vectoring.

WEAR

 

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the 2 sprockets, since it is always the smaller 1 that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

The lengthening due to wear of a chain is calculated by the following formula:

M = the length of a number of links measured

S = the number of links measured

P = Pitch

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the 2 sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.

CHAIN STRENGTH

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

 

 

 

 

Shipping Cost:

Estimated freight per unit.



To be negotiated|


Freight Cost Calculator

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car
Surface Treatment: Polishing
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

mechanical

Can a mechanical chain be used for heavy-duty applications?

Yes, a mechanical chain can be used for heavy-duty applications. Mechanical chains are designed to withstand high loads and provide reliable power transmission in demanding industrial settings. Here are some reasons why mechanical chains are suitable for heavy-duty applications:

  • Strength and durability: Mechanical chains are made from high-strength materials such as alloy steel or stainless steel, which give them excellent tensile strength and durability to handle heavy loads.
  • Wide range of sizes and capacities: Mechanical chains are available in various sizes and configurations to accommodate different load capacities. They can be selected based on the specific requirements of the heavy-duty application.
  • Effective power transmission: Mechanical chains efficiently transfer power from the driver sprocket to the driven sprocket, ensuring reliable performance even under heavy loads.
  • Ability to handle shock loads: Mechanical chains are designed to absorb and distribute shock loads, which is crucial in heavy-duty applications where sudden impacts or changes in load can occur.
  • Options for specialized chains: There are specialized types of mechanical chains available for specific heavy-duty applications, such as roller chains for conveying heavy materials or conveyor chains for material handling systems.

When selecting a mechanical chain for heavy-duty applications, it’s important to consider factors such as the load capacity, operating conditions, lubrication requirements, and maintenance considerations. Additionally, proper installation, tensioning, and regular inspection of the chain are essential to ensure optimal performance and longevity in heavy-duty applications.

mechanical

What are the cost considerations when purchasing a mechanical chain?

When purchasing a mechanical chain, there are several cost considerations to take into account. These include the initial cost of the chain, ongoing maintenance and replacement costs, and the overall value it provides to your application. Here are some detailed cost considerations:

  • Initial Cost: The initial cost of a mechanical chain depends on various factors such as chain type, size, material, and quality. Higher-quality chains may have a higher upfront cost but often offer better durability and longer service life.
  • Maintenance Costs: Consider the maintenance requirements and associated costs when evaluating the overall cost of a mechanical chain. Regular lubrication, tension adjustments, and periodic inspections are necessary for proper chain performance and longevity. The cost of lubricants, maintenance tools, and labor should be factored into the total cost of ownership.
  • Replacement Costs: Mechanical chains experience wear over time and may require replacement after reaching their service life or if they become damaged or worn beyond acceptable limits. Consider the frequency and cost of chain replacements when assessing the overall cost.
  • Application-Specific Costs: Evaluate the specific requirements of your application. If the application demands high load capacity or specialized chain features, it may involve additional costs. Customization, special coatings, or specific certifications may also influence the overall cost.
  • Total Cost of Ownership: Assess the long-term value and total cost of ownership rather than focusing solely on the initial purchase price. A higher-quality chain that offers better durability, longer service life, and lower maintenance requirements can result in reduced downtime, fewer replacements, and lower overall costs in the long run.

It is recommended to consider the overall value and total cost of ownership when evaluating the cost of a mechanical chain. Consult with reputable suppliers or manufacturers who can provide guidance on selecting the right chain based on your application requirements and budget constraints.

China factory Mechanical Chain Senqcia Chain 80 A Series Short Pitch Precision Simplex Roller Chains and Bush Chains with Attachments  China factory Mechanical Chain Senqcia Chain 80 A Series Short Pitch Precision Simplex Roller Chains and Bush Chains with Attachments
editor by CX 2023-07-20

China factory Mechanical Chain Senqcia Chain 80 A Series Short Pitch Precision Simplex Roller Chains and Bush Chains with Attachments

Product Description

A Series Short pitch Precision Simplex Roller Chains & Bush Chains

ISO/ANSI/ DIN
Chain No.
China
Chain No.
Pitch
P
mm
Roller diameter

d1max
mm

Width between inner plates
b1min
mm
Pin diameter

d2max
mm

Pin length Inner plate depth
h2max
mm
 Plate  thickness

Tmax
 mm

Tensile strength

Qmin
kN/lbf

Average tensile strength
Q0
kN
Weight per meter
q  
 kg/m
Lmax
mm
Lcmax
mm
80 16A-1 25.4000 15.88 15.75 7.92 32.70 35.00 24.00 3.25 56.70/12886 74.3 2.60

*Bush chain:d1 in the table indicates the external diameter of the bush

ROLLER CHAIN

Roller chain or bush roller chain is the type of chain drive most commonly used for transmission of mechanical power on many kinds of domestic, industrial and agricultural machinery, including conveyors, wire- and tube-drawing machines, printing presses, cars, motorcycles, and bicycles. It consists of a series of short cylindrical rollers held together by side links. It is driven by a toothed wheel called a sprocket. It is a simple, reliable, and efficient means of power transmission.

CONSTRUCTION OF THE CHAIN

Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CZPT which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.

LUBRICATION

Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an CZPT paste that will compound wear on chains. This problem can be circumvented by use of a “dry” PTFE spray, which forms a solid film after application and repels both particles and moisture.

USE

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain system
Roller chains are used in low- to mid-speed drives at around 600 to 800 feet per minute; however, at higher speeds, around 2,000 to 3,000 feet per minute, V-belts are normally used due to wear and noise issues.
A bicycle chain is a form of roller chain. Bicycle chains may have a master link, or may require a chain tool for removal and installation. A similar but larger and thus stronger chain is used on most motorcycles although it is sometimes replaced by either a toothed belt or a shaft drive, which offer lower noise level and fewer maintenance requirements.
The great majority of automobile engines use roller chains to drive the camshaft(s). Very high performance engines often use gear drive, and starting in the early 1960s toothed belts were used by some manufacturers.
Chains are also used in forklifts using hydraulic rams as a pulley to raise and lower the carriage; however, these chains are not considered roller chains, but are classified as lift or leaf chains.
Chainsaw cutting chains superficially resemble roller chains but are more closely related to leaf chains. They are driven by projecting drive links which also serve to locate the chain CZPT the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain drive from an air motor
A perhaps unusual use of a pair of motorcycle chains is in the Harrier Jump Jet, where a chain drive from an air motor is used to rotate the movable engine nozzles, allowing them to be pointed downwards for hovering flight, or to the rear for normal CZPT flight, a system known as Thrust vectoring.

WEAR

 

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the 2 sprockets, since it is always the smaller 1 that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

The lengthening due to wear of a chain is calculated by the following formula:

M = the length of a number of links measured

S = the number of links measured

P = Pitch

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the 2 sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.

CHAIN STRENGTH

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

 

 

 

 

Shipping Cost:

Estimated freight per unit.



To be negotiated|


Freight Cost Calculator

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car
Surface Treatment: Polishing
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

mechanical

How to calculate the power requirements for a mechanical chain drive?

Calculating the power requirements for a mechanical chain drive involves considering several factors related to the application and the chain drive system. Here’s a step-by-step process:

  1. Determine the operating conditions: Identify the specific operating conditions of the chain drive system, including the speed of the drive, the torque required to transmit, and the desired service life of the chain.
  2. Calculate the required torque: The torque requirement is typically derived from the load being transmitted by the chain drive. Consider the rotational speed and the load characteristics to calculate the required torque.
  3. Select a suitable chain type: Based on the torque requirement and the operating conditions, choose an appropriate mechanical chain that can handle the load and transmit power efficiently.
  4. Consider the efficiency: Mechanical chain drives have efficiency ratings that indicate how effectively they transfer power. Consider the efficiency of the chosen chain drive system in your calculations.
  5. Calculate the power requirements: Multiply the required torque by the rotational speed to calculate the power required for the mechanical chain drive. The power is given by the formula:

Power (in watts) = Torque (in Newton-meters) x Speed (in radians per second)

Alternatively, if the rotational speed is given in revolutions per minute (RPM), convert it to radians per second using the formula:

Speed (in radians per second) = Speed (in RPM) x (2π/60)

By following these steps and considering the specific operating conditions and requirements of the chain drive system, you can accurately calculate the power requirements for a mechanical chain drive.

mechanical

Can a mechanical chain be used for vertical lifting applications?

Yes, a mechanical chain can be used for vertical lifting applications in certain circumstances. However, it is essential to consider several factors to ensure safe and efficient lifting operations. Here are some detailed explanations:

A mechanical chain used for vertical lifting is typically referred to as a “lifting chain” or “hoisting chain.” Lifting chains are designed and manufactured to meet specific safety standards and regulations to ensure their suitability for lifting applications.

When considering the use of a mechanical chain for vertical lifting, the following factors should be considered:

  • Chain Design and Strength: Lifting chains are specially designed and constructed to withstand the stresses and forces involved in lifting operations. They are typically made from high-strength alloy steel and feature specific chain configurations, such as grade, pitch, and diameter, to provide the necessary load-bearing capacity.
  • Load Capacity and Working Load Limit (WLL): It is crucial to select a lifting chain with an appropriate load capacity for the intended lifting application. The working load limit (WLL) specifies the maximum load that the chain can safely lift under normal operating conditions. Exceeding the WLL can result in chain failure and potential accidents.
  • Attachments and End Fittings: Lifting chains often incorporate end fittings or attachments, such as hooks, shackles, or master links, to facilitate connection to the load and lifting equipment. These attachments should be selected and used in accordance with applicable safety standards and guidelines.
  • Safety Factors and Regulations: Lifting operations involving mechanical chains are subject to various safety regulations and standards, such as those set by occupational safety organizations and government authorities. These regulations specify requirements for equipment selection, inspection, maintenance, and safe operating practices. It is important to adhere to these regulations to ensure the safety of personnel and proper lifting operations.
  • Inspection and Maintenance: Regular inspection and maintenance of the lifting chain are essential to ensure its continued safe and reliable operation. Visual inspections, load testing, and verification of compliance with safety standards should be performed at regular intervals by qualified personnel.

It is crucial to consult with qualified professionals and adhere to applicable regulations and guidelines when using a mechanical chain for vertical lifting applications. They can provide specific guidance based on the requirements of the lifting task, ensuring the selection and safe use of the appropriate lifting chain.

China factory Mechanical Chain Senqcia Chain 80 A Series Short Pitch Precision Simplex Roller Chains and Bush Chains with Attachments  China factory Mechanical Chain Senqcia Chain 80 A Series Short Pitch Precision Simplex Roller Chains and Bush Chains with Attachments
editor by CX 2023-07-19

China Standard Ca650 Agricultural Chain and Attachments duplex roller chain

Product Description

 

Item Name  Agricultural Roller Chains Model Standard
Row / Application Machinery Parts
Suiface Treament netural/sand-blasted/shot-peening Certification  ISO, ANSI, DIN, BS
Packing Packaged in boxes and wooden cases, or packaged in reels and then on pallets Port Any sea port or airport in china

 

Contact us

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle
Surface Treatment: Netural/Sand-Blasted/Shot-Peening
Structure: Roller Chain
Material: Carbon Steel
Type: Short Pitch Chain
Samples:
US$ 3.45/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

chain

What is a drive chain?

A drive chain is a wheeled device that transmits power from one gear to another. The drive chain is usually an oval ring around a corner or worm gear. On the other hand, idler pulleys do not transmit power and are not used to move the chain. In some cases, drive chains can be used with idler pulleys to transport objects. This allows the drive chain to recover some power from the second gear.

conveyor chain

There are many types of conveyor chains to choose from. One type is a closed joint chain. It consists of the barrel and connecting rod, made from a single casting and heat-treated for high strength and durability. Conveyor chains typically have low running speeds and are typically made of malleable iron. Another type of chain is the power transmission chain, which is used to transmit mechanical power. They feature efficient lubrication and are stronger than conventional conveyor chains.
Roller chain pitches can range from half an inch to a third of an inch. They are available in steel and nickel-plated steel. They can be used with inline or staggered rollers and can be designed with different pitch levels. They can also have bushings between the chainplates or gaps between the teeth to increase their maximum spacing. When choosing a conveyor chain, remember to properly lubricate bearing surfaces to minimize power absorption, wear, and corrosion. Mineral oils of medium viscosity are suitable for normal operating temperatures. SAE 20W50 is suitable. Manufacturers also offer self-lubricating chains.
Conveyor chains are used in many industries. The automotive industry has traditionally used these chains for bulk transport. Their reliability and low cost make them an excellent choice for a variety of applications. CZPT Chains offers stainless steel and CZPT conveyor chains to meet your unique requirements. If you’re in the market for a new conveyor, don’t forget to shop around. CZPT Chain can help you find the perfect one.
The regular drive version consists of an ASME/ANSI roller chain wrapped around a driven sprocket. It can also be configured for variable rpm. The gear ratio between the two parts determines the reduction or increase in speed. In some cases, solution chains can be used. Roller chains are more efficient. Then, there are solutions for both cases. There are many types of conveyor chains to choose from.
Conveyor chain pitch also plays an important role in performance. The smaller the pitch of the chain, the faster it spins. On the other hand, a smaller pitch will require more teeth on the sprocket, which means more links will be engaged during the movement. This smaller articulation angle also produces smoother motion. It also reduces vibration. Therefore, CZPT Chains can be trusted for a long time.

roller chain

The performance of a drive chain depends on how well it is maintained and lubricated. Careful attention to detail is required when selecting a roller chain, which is one of the most important components in a drive chain. Its proper lubrication and assembly will significantly affect its wear life. Here are some important tips to follow when buying a roller chain:
The size of the drive chain should be selected according to the sprockets used. The large sprocket should have at least 25 teeth, and the small sprocket should have fewer teeth. The pitch of a drive chain is the contact angle between the chain and the sprocket. The smaller the sprocket, the smaller the contact angle of the two parts. Larger sprockets are better, but smaller sprockets must never have fewer teeth.
When purchasing a roller chain, be sure to consider the maximum speed of the small sprocket. This will determine how much lubrication you need. Different lubrication systems have different requirements. Manual lubrication limits how many feet per minute the drive chain can run, while oil bath lubrication can get you up to 1100 ft/min. The only way to maximize drive chain speed is to purchase a pump lubrication system.
Once you have the right length, you can determine if you need a new one. To do this you have to move the axis to measure the length. Once the length is determined, the drive chain should be removed from the sprocket and measured using the ANSI specified measuring load. You should also follow safety guidelines when measuring your chain. If you want to maximize the life of your drive chain, be sure to follow these tips.
Another important consideration is the type of environment you operate in. For applications that need to avoid rubbing steel rails, it is best to use a roller chain that can withstand a clean indoor environment. Although roller chains are generally more durable, they must be stored properly to avoid corrosion. If you care about the environment, consider opting for double chain. Its durability and low maintenance costs will make it a valuable investment in your business.

closed pivot

Closed-end pivot drive chains are used in a variety of applications. They are known for their durability, high strength, and long life. They are available in a variety of grades, including grade 400, grade 600, and grade 800 pivots, which can withstand the high forces required for certain applications. Enclosed pivot chains can be used to lift, pull, convey and transfer heavy loads.
Class 400 closed-end pivot chain features one-piece cast offset link construction. Steel pins connect each link and are prevented from rotating by head stops. This design allows the pin to connect inside the barrel without breaking. This type of chain is the most commonly used and has the highest durability. In addition to being extremely durable, it offers long-lasting performance and smooth operation.
Another closed-end pivot conveyor chain drive is called a power drive chain. These chains consist of barrels and links used to transmit rotation from one shaft to another. The barrels of the closed-end pivot chains are made of steel, which allows them to run easily on the sprockets. Block drive chains are used for low-speed applications, but they can be noisy when the chain is in contact with the sprockets.
The enclosed pivot drive chain has rollers on both ends to minimize wear. These chains are usually made of steel and can be used in areas where high-speed power transmission is required. They are also available in heavy-duty versions. Unlike other types of chains, steel pivot chains are designed for a variety of applications. They are suitable for heavy-duty applications and their open barrel design allows for minimal contact with the pins in the barrel and the root of the sprocket.
chain

Linear chain

CZPT is an important part of linear drive technology. This type of chain is capable of delivering real power in tight spaces. Typically, loads are moved by pulling or pushing. CZPT can perform both types of movements. They can push and pull additional loads. This type of chain can also be wound and stored in the magazine. It is a popular choice for small machine tools and many other uses.
Unlike traditional mechanical chains, CZPT uses a push-pull strategy to move heavy objects. It is a rigid locking design that prevents kinking and allows the chain to transmit force without bending. The CZPT is an excellent choice for moving large loads and is particularly versatile in power transmission. However, CZPT is more expensive than traditional drive chain options.
The service life of a linear chain depends on its design, material type and size. You may want to buy a good quality chain, but it’s not necessary in all cases. While superior quality can extend the life of the chain, it may not be necessary for low-speed drives or very light shock loads. If you’re not dealing with high-velocity shock loads, you probably don’t need features like oil reservoirs or bushing grooves.
The size of the drive sprocket can have a major impact on the overall life of the linear chain. It determines how fast the chain can go and how much horsepower it can produce. An 11-tooth chain will hit about half its rated speed, but only about 30 percent of its rated horsepower. You can extend the life of your linear chain by choosing a drive sprocket with a higher number of teeth. It is best to choose a drive sprocket with a high number of teeth, but make sure the number of teeth is even. This will ensure that your chain wear is evenly distributed.

China Standard Ca650 Agricultural Chain and Attachments   duplex roller chainChina Standard Ca650 Agricultural Chain and Attachments   duplex roller chain
editor by CX